Euclidean & Geodesic Distance between a Facial Feature Points in Two-Dimensional Face Recognition System

نویسندگان

  • Rachid AHDID
  • Khaddouj TAIFI
  • Said SAFI
چکیده

In this paper, we present two feature extraction methods for two-dimensional face recognition. Our approaches are based on facial feature points detection then compute the Euclidean Distance between all pairs of this points for a first method (ED-FFP) and Geodesic Distance in the second approach (GD-FFP). These measures are employed as inputs to a commonly used classification techniques such as Neural Networks (NN), kNearest Neighbor (KNN) and Support Vector Machines (SVM). To test the present methods and evaluate its performance, a series of experiments were performed on two-dimensional face image databases (ORL and Yale). The recognition rate across all trials was higher using Geodesic Distance (GD-FFP) than Euclidean Distance (ED-FFP). The experimental results also indicated that the extraction of image features is computationally more efficient using Geodesic Distance than Euclidean Distance. Keywords—face recognition, Euclidean Distance, Geodesic Distance, Neural Networks, k-Nearest Neighbor, Support Vector Machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euclidean and geodesic distance between a facial feature points in two-dimensional face recognition system

In this paper, we present two features extraction methods for two-dimensional face recognition. We have used the facial feature point detection to compute the Euclidean Distance (ED) between all pairs of these points for the first approach of Face Feature Points (ED-FFP) and Geodesic Distance (GD-FFP) in the second one. For a suitable comparison, we have employed three well-known classification...

متن کامل

3d Face Recognition from Range Image

MIAO, SHUN. 3D Face Recognition From Range Image. (Under the direction of Professor Hamid Krim). In this thesis, we explore the statistical and geometrical behavior of the uncontrolled parameters of a human face, including both the rigid transform caused by a head pose and the non-rigid transform caused by a facial expression. We focus on developing a 3D facial recognition scheme which is robus...

متن کامل

Face Recognition in the Presence of Expressions

The purpose of this study is to enhance the algorithms towards the development of an efficient three dimensional face recognition system in the presence of expressions. The overall aim is to analyse patterns of expressions based on techniques relating to feature distances compare to the benchmarks. To investigate how the use of distances can help the recognition process, a feature set of diagon...

متن کامل

Face Recognition Based on Manifold Learning and SVM Classification of 2D and 3D Geodesic Curves

This chapter has a twofold objective. On the one hand, an original approach based on the computation of radial geodesic distances (RGD) is proposed to represent two-dimensional (2D) face images and three-dimensional (3D) face models for the purpose of face recognition. In 3D, the RGD of a generic point of a 3D face surface is computed as the length of the particular geodesic that connects the p...

متن کامل

Methods of Geodesic Distance in Two-Dimensional Face Recognition

Abstract—In this paper, we present a comparative study of three methods of 2D face recognition system such as: Iso-Geodesic Curves (IGC), Geodesic Distance (GD) and Geodesic-Intensity Histogram (GIH). These approaches are based on computing of geodesic distance between points of facial surface and between facial curves. In this study we represented the image at gray level as a 2D surface in a 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016